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ABSTRACT

The mean meridional circulation of the atmosphere is presented using the mass (more specifically, the

pressure corresponding to the mass) above the isentrope of interest as the vertical coordinate. In this vertical

coordinate, themass-weightedmean circulation is exactly balanced by entropy sources and sinks with no eddy

flux contribution as in the isentropic coordinate, and the coordinate can be readily generalized to the mass

abovemoist isentropes or other quasi-conservative tracers by construction. The corresponding Eliassen–Palm

(EP) flux divergence for the zonal-mean angular momentum is formulated in a hybrid isobaric–isentropic

form, extending the conventional transformed Eulerian-mean (TEM) formulation to finite-amplitude non-

geostrophic eddies on the sphere. In the small-amplitude limit, the hybrid isobaric–isentropic formulation

reduces to the TEM formulation.

Applying to the NCEP–U.S. Department of Energy (DOE) Reanalysis 2, the new formulation resolves the

deficiency of the conventional TEM formulation for the near-surface flow, where the isentropic surface in-

tersects the ground, and the mean circulation agrees well with the TEM above the near-surface layer. In the

small-amplitude limit, this improvement near the surface can be partially attributed to the isentropic static

stability over the isobaric counterpart, as the mass density in the near-surface isentropic layers gradually ap-

proaches zero. Also, the meanmass streamfunction can be approximately obtained from the EP flux divergence

except for the deep tropics or the near-surface flow, highlighting the dominant control of potential vorticity

mixing for the subtropics-to-pole mean circulations. It is then expected to provide a valuable diagnostic

framework not only for global circulation theory, but also for atmospheric transport in the troposphere.

1. Introduction

The global atmospheric circulation transports mo-

mentum, energy, moisture, and chemical constituents

both horizontally and vertically, and consequently im-

pacts both global and regional climate. The conven-

tional Eulerian-mean circulation, averaged at constant

pressure or height, displays a three-cell pattern in each

hemisphere, with a tropicalHadley cell, amidlatitude Ferrel

cell, and a polar cell (e.g., Peixoto and Oort 1992). By con-

trast, to the extent that an isentropic surface can be regarded

as a material surface in the absence of diabatic heating or

diffusion, the mean circulation averaged at constant po-

tential temperature can approximate the Lagrangian

motion of an air parcel. In the isentropic coordinates, the

mean circulation exhibits one equator-to-pole cell, with

a poleward circulation in the upper troposphere and

an equatorward return flow near the surface (e.g.,

Townsend and Johnson 1985; Tung 1986; Iwasaki 1989;

Juckes et al. 1994; Held and Schneider 1999; Tanaka

et al. 2004; Czaja andMarshall 2006; Pauluis et al. 2008,

2010). The upward branch of the isentropic circulation

corresponds to diabatic heating in the tropics and the

descending branch in the polar region is accompanied

by radiative cooling.

The isentropic mean circulation is approximated in

more familiar geometric coordinates by the transformed

Eulerian-mean (TEM) residual circulation, resulting in

an analogous single-cell circulation from equator to

pole (e.g., Andrews and McIntyre 1976, 1978; Edmon

et al. 1980; Tung 1986; Andrews et al. 1987; Iwasaki

1989; McIntosh and McDougall 1996; Juckes 2001; Plumb

and Ferrari 2005; Pauluis et al. 2011). In the TEM for-

mulation, the residual circulation is generally formulated

as the Eulerian-mean circulation plus an eddy term that

corresponds to a wave-driven Stokes drift in the small-

amplitude limit. Held and Schneider (1999) showed that
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owing to nearly neutral static stability in the boundary

layer, the equatorward flow in the conventional TEM

framework of Andrews and McIntyre (1976) does not

close at the ground, implying a very thin near-surface

layer. This contrasts with the isentropic circulation that

an equatorward flow exists in a finite-depth isentropic

layer where the layer intersects with the ground (Held

and Schneider 1999). Several alternative approximations

of isentropic circulation were proposed, such as con-

sidering the meridional temperature gradient rather

than the static stability in the original TEM formula-

tion (Held and Schneider 1999) or partitioning the eddy

fluxes into adiabatic and diabatic components (Plumb and

Ferrari 2005). More recently, Pauluis et al. (2011) gener-

alize the TEM formulation to nonmonotonic vertical co-

ordinates by assuming a Gaussian joint distribution for

the meridional wind and the state variable of interest.

Another important aspect of the TEM circulation is

the corresponding eddy forcing of angular momentum

transport. Under the quasigeostrophic approximation,

the eddy forcing of angular momentum can be expressed

as the well-known Eliassen–Palm (EP) flux divergence

(e.g., Andrews and McIntyre 1976; Edmon et al. 1980),

corresponding to the nonacceleration theorem (e.g.,

Charney and Drazin 1961). This relationship can be

generalized to finite-amplitude eddies in the isentropic

coordinates on the sphere, treating the isentropic mean

circulation as the analog for the TEM residual circu-

lation (e.g., Andrews 1983; Tung 1986; Iwasaki 1989,

1998). Further, using a coordinate-independent formu-

lation of Andrews and McIntyre (1978), Plumb and

Ferrari (2005) generalized the TEM theory for non-

quasigeostrophic eddies in geometric coordinates, and

within this framework, Kuo et al. (2005) analyzed the

potential vorticity (PV) homogenization in a cylinder

flow.

In this paper, we present a new hybrid isobaric–

isentropic diagnostic of the mean circulation and cor-

responding eddy forcing using the mass above the

isentropes at each latitude and time as the vertical co-

ordinate. Given the fact that the mass above the isen-

tropic surface decreases monotonically with increasing

potential temperature (i.e., positive static stability), we

can define a new vertical coordinate corresponding to

the mass above the isentrope of interest, termed as

‘‘equivalent pressure,’’ analogous to the familiar con-

cept of equivalent latitude (Butchart and Remsberg

1986). This is essentially equivalent to changing the

vertical coordinate of the isentropic formulation from

potential temperature to the isentropic zonal-mean

pressure in Iwasaki (1989) and Iwasaki (1998). How-

ever, our hybrid diagnostic framework is built on the

pressure coordinates and can be readily generalized

from dry isentropes to other quasi-conservative quan-

tities by construction. Further, the relationship be-

tween the TEM and isentropic circulation is clearer

in our hybrid formulation, and the problem of con-

ventional TEM streamfunction near the ground can be

remedied, at least partially, by replacing the Eulerian

static stability with isentropic static stability.

The paper is organized as follows. We first introduce

the basic formulations of hybrid isobaric–isentropic di-

agnostics in section 2. The isentropic mass-weighted

mean static stability andmeridional wind are discussed in

comparison with their isobaric counterparts in section 3.

In section 4, the thermodynamic balance between the

mean circulation and entropy sources and sinks is de-

rived and the mean streamfunction is presented for the

reanalysis data. The corresponding angular momentum

budget is investigated in section 5. The conclusions

and discussion are provided in section 6. Some detailed

derivations are offered in the appendices.

2. Formulation of hybrid isobaric–isentropic
diagnostics

a. Basic formulation

We first introduce the formulation of the diagnostics

using the mass above isentropes as the vertical co-

ordinate. This is equivalent to changing the vertical

coordinate of the isentropic formulation from the po-

tential temperature (e.g., Andrews 1983; Tung 1986) to

the isentropic zonal-mean pressure (e.g., Iwasaki 1989,

1998; Tanaka et al. 2004). However, our formulation is

derived from the pressure coordinate by treating en-

tropy as a quasi-conservative tracer, analogous to the

modified Lagrangian-mean formulation of Nakamura

(1995) using a tracer as the meridional coordinate. The

formulation can be readily generalized to moist entropy

or other quasi-conservative tracers by construction.

Consider an instantaneous map of potential tem-

perature in the longitude–pressure plane, as depicted

in Fig. 1a. The temperature distribution does not have

to be smooth or regular, and it can be strongly disturbed

by extreme weather events such as intensive convection,

Rossby wave breaking, or boundary layer mixing. As

for the isentropic coordinate (e.g., Held and Schneider

1999), it would be convenient to define a density func-

tion s by a Heaviside step function H(ps 2 p) for the

massless underground:

s[H(ps 2 p) , (1)

where ps is the surface pressure, and the zonal mean

s(f, p, t) denotes the probability of the pressure surface

p at the latitude f and time t above the ground.
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The mass above the isentrope u 5 Q at f and t

(shading in Fig. 1a) can be written as

m(f,Q, t)52
a cosf

g

ð
u.Q

du

þ
s

�
›p

›u

�
u

dlu

5
a cosf

g

ðp
s

0

þ
sH(u2Q) dldp , (2)

where the first circuit integral is evaluated along the is-

entropic line: dlu is the isentropic displacement in lon-

gitude and (›p/›u)udu is the displacement in pressure

normal to the isentropic line. The second circuit integral

is evaluated along the isobaric line, the step function

H(u2Q) ensures the mass above the isentropic surface

Q, and s for the surface boundary condition.

Since potential temperature increases monotonically

with height (i.e., positive static stability), the mass

m(f,Q, t) can be used to define a new vertical coordinate

pe—the pressure of the isentropic line after a reversible

(mass- and entropy-conserved) zonalization (e.g., from

Fig. 1a to Fig. 1b):

m(f,Q, t)5
2pa cosf

g

ð
p,p

e

s dp , (3)

where pe can be termed as the ‘‘Q-equivalent pressure,’’

analogous to the familiar concept of the equivalent lati-

tude for the diagnostic of isentropic transport (Butchart

and Remsberg 1986). At each latitude and time, this

yields a one-to-one correspondence of Q 5 Q[pe(Q)] by

�
›m

›pe

�
f,t

5
2pas cosf

g
, (4)

where the subscripts outside a bracket denote that the

variable is held fixed when evaluating the partial deri-

vation. In comparison with the isentropic zonal-mean

pressure p[, which is used as the vertical coordinate

in the isentropic formulation of Iwasaki (1998), pe is

identical to p[ if the isentropic surface does not in-

tersect the ground. But pe can differ from p[ when the

isentropic surface intersects the ground, as p[ does not

include the step function s in the formulation.

Next, for a quantity X, we can define the mass-

weighted integral above the isentropic surface as (shad-

ing in Fig. 1a)

M(X)52
a cosf

g

ð
u.Q

du

þ
sX

�
›p

›u

�
u

dlu

5
a cosf

g

ðp
s

0

þ
sXH(u2Q) dl dp . (5)

Similar to the modified Lagrangian mean in Nakamura

(1995), the isentropic mean can be defined as the mass-

weighted average at the u 5 Q contour:

X
Q
[

�
›M(X)

›m

�
Q

5
›M(X)/›Q

›m/›Q

5

þ
u5Q

sX

�
›p

›u

�
u

dlu

þ
u5Q

s

�
›p

›u

�
u

dlu .

�
(6)

By definition, u
Q
5Q. Also, Q is conserved in the ab-

sence of diabatic heating and diffusion. Since an isen-

tropic surface can be regarded as a quasi-conservative

material surface, X
Q
can be seen as a quasi-Lagrangian

mean of X. In practice, X
Q
can be calculated by a finite-

differencing scheme of M(X) with respect to m, and

FIG. 1. Isentropic and isobaric area integrals with respect to the isentrope u5Q. The shading

highlights (a) the area of integration for the isentropic area integral above u 5 Q and (b) the

isobaric integral above p5 pe. (c) The integral of the area in light shading minus the integral of

area in dark shading. After a reversible (mass- and entropy-conserved) zonalization, the is-

entropic lineQ in (a) results in the isobar p5 pe in (b), where the mass in light shading in (a) is

equal to the mass in dark shading in (b). In (c), dpe(l)5 p(l, Q)2 pe denotes the deviation of

the mass and has zero zonal mean.
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therefore it is defined by quantities in the pressure

coordinates.

Accordingly, by including s, the isobaric mean can be

written as the mass-weighted zonal mean at the pressure

surface p5 pe (Fig. 1b), and an eddy term can be defined

as the deviation therefrom. If the pressure surface does

not intersect the ground, they reduce to the regular zonal

mean and eddy terms:

X
p
5
sX

s

X 0 5X2X
p
. (7)

By this definition, X 0p [ 0, but X 0 can be nonzero if the

pressure surface intersects the ground.

Hereafter we set the pressure level in the isobaric

mean X
p
equal to the equivalent pressure in the isen-

tropic mean X
Q
(i.e., p 5 pe). For the isentropic mean,

this results from a reversible (mass- and entropy-

conserved) vertical adjustment of the isentropic line

toward a zonally symmetric basic state, and pe has

a one-to-one correspondence to the mass above the

isentrope Q by Eq. (4). As such, we construct a hybrid

isobaric–isentropic diagnostic using p 5 pe as the verti-

cal coordinate.

b. Data and analysis method

In this study, we employ the National Centers for

Environmental Prediction (NCEP)–U.S. Department of

Energy (DOE) Reanalysis 2, an updated product of

the NCEP–National Center for Atmospheric Research

(NCAR) reanalysis (Kanamitsu et al. 2002). The data

are available at the same resolution as the NCEP–NCAR

reanalysis, with a 2.58 3 2.58 horizontal resolution and

17 pressure levels. We analyze 6-hourly data for the

period of 1979–2011, and the 6-hourly data are ex-

pected to capture the contributions of extreme weather

events to the mass fluxes better than daily data.

To facilitate the vertical integral or derivative with

respect to p or pe, the meteorological fields are inter-

polated linearly onto 52 evenly spaced vertical levels

from 20 to 1040 hPa with an increment of 20 hPa. By

comparing the geopotential height with the surface

orography, we determine whether a grid point is above

or below the ground (i.e., the value of s). Consistent

with aforementioned formulation, the underground

world is set as motionless (i.e., u 5 y 5 v 5 0) and

massless (i.e., s5 0). In practice, to ensure amonotonic

relationship between Q and pe in Eq. (4), we set a very

small number for the mass density below the ground as

s 5 10220, making it easier in coding than dealing with

a constantly moving lower boundary. In terms of entropy,

to be consistent with the isentropic coordinates in which

the underground mass density 2(1/g) ›p/›u is zero, the

underground potential temperature is interpolated down-

ward by assuming a very large value of ›u/›p.

Additionally, in computing the isentropic mass-

weighted integral [i.e., Eqs. (2) and (5)] at a latitude

and time, we first sort u in an ascending order for all of

the points. Thenm andM(X) can be obtained for each

value of Q by aggregating all of the points with u . Q.

The isentropic mean, defined by Eq. (6), is calculated

by a finite-differencing scheme of M(X) with respect

to m. Finally, the equivalent pressure [equivalently

the mass above an isentrope by Eq. (4)] and the cor-

responding isentropic means are interpolated onto the

same 52 pressure levels as the isobaric means to facil-

itate a hybrid isobaric–isentropic diagnostic.

We illustrate the usefulness of our diagnostic using

the example of weather at 0000 UTC 28 December

2010. In Fig. 2a, the mean sea level pressure (MSLP)

displays a notable extratropical storm at about 408N,

608W, known as the December 2010 North American

blizzard. The longitude–pressure cross section of the

storm at 408N (Fig. 2b) displays a poleward (solid line)

surface wind on the east of 608W associated with warm

air and an equatorward (dashed line) surface wind on the

west associated with cold air. Similar poleward/warm-air

and equatorward/cold-air correlations are evident else-

where in the lower troposphere, as expected from the

poleward heat transport by extratropical storms. In

Figs. 2c–e, the isobaric means (black) and isentropic

means (red) are compared. The isobaric zonal-mean

meridional wind is characterized by an equatorward

wind at 200hPa and a poleward wind near the surface—a

typical circulation pattern of the Ferrel cell. However,

when averaging with respect to the isentropic surface

and then transformed to the equivalent pressure, the

mean meridional wind exhibits a poleward flow within

500–850 hPa and an equatorward flow below 850 hPa,

where a fraction of pressure surface is underground,

as indicated by s , 1. This corresponds to the single

overturning cell of the isentropic mean circulation.

The two equivalent-pressure layers of 500–850 and

850–1000hPa approximately correspond to the two isen-

tropic layers of 290–310 and 270–290K (Fig. 2e), and in

Fig. 2b, the warmer layer portrays a Rossby wave pattern

and the colder layer is seen to intersect the ground. In-

terestingly, the isentropic mean shows much colder tem-

perature near the surface than the isobaric mean, which

may be attributed to the cold temperature advection as-

sociated with the isentropic equatorward flow. In spite of

the circulation diagnostic of a single day, the general pat-

tern of mean meridional circulation in equivalent pressure

agrees well with the mean circulation in the isentropic

coordinate depicted in Held and Schneider (1999).
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3. Static stability and meridional wind

Here we discuss the isentropic static stability and

meridional wind in comparison with their correspond-

ing isobaric means, especially in the context of the

near-surface stability and circulation. Figure 3 shows

the isentropic mass-weighted mean potential temper-

ature (dash–dotted) and the isentropic mean minus

isobaric mean temperature (i.e., Q2 u
p
, shown in solid

and dashed lines) in December–February (DJF) and

June–August (JJA) for the period 1979–2011. Similar

to the circulation diagnostics of a single day in Fig. 2,

the time-averaged isentropic near-surface (where a frac-

tion of pressure surface is below the ground, indicated

by the light shading) temperature is colder than the

isobaric mean, with a peak of about 11K colder in the

Northern Hemisphere (NH) winter, corresponding to

about 1-K warming in the upper troposphere. The large

contrast in warm and cold anomalies suggests that the

surface cold extremes are very localized (i.e., small s),

since the mass-weighted average of warm and cold

anomalies at a latitude should be equal. Additionally,

this suggests that the air mass in the isentropic co-

ordinates is more stratified than the mass in the isobaric

FIG. 2. An example of isobaric and isentropic mass-weighted means at 408N at 0000 UTC 28 Dec 2010. (a) MSLP (hPa) is shown in

shading, and the dashed line denotes 408N. (b) The longitude–pressure cross section at 408N, where the shading denotes potential tem-

perature (K) and the contour denotes meridional wind (solid for positive, dashed for negative, and zero omitted; contour interval is

10m s21). (c) The probability of pressure surface above the ground at 408N, s. (d) Meridional wind, yQ and y p. (e) Potential temperature,

Q and u
p
. Black lines in (c)–(e) are isobaric zonal means and red lines are isentropic means. See Eqs. (6) and (7) for the definitions of

notation.
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coordinates, especially near the ground. These are con-

sistent with Fig. 2b wherein there is more near-surface

stratification over the colder air mass than over the

warmer air mass.

Why is the air mass in the isentropic coordinates more

stratified than the isobaric counterpart? We illustrate

this using an idealized temperature profile with uniform

stratification and a small-amplitude thermal perturba-

tion. For a small-amplitude and conservative thermal

perturbation, the temperature anomaly can be approx-

imated as

u0 ’2df›u
p
/›f2 dp›u

p
/›p

52dp

"
12

(›p/›f)
u
p

dp/df

#
›u

p
/›p , (8)

where df and dp denote the meridional and vertical

parcel displacements, respectively. Figure 4 displays

an idealized temperature profile with a wavenumber-1

perturbation, which may be attributed to either merid-

ional and/or vertical parcel perturbation. The isentropic

mass density, 2(1/g)(›pe/›Q), gradually becomes zero

FIG. 3. Time and isentropic mass-weighted mean potential temperature (dash–dotted, contour interval is 20K)

and the difference between isentropic and isobaricmeans (i.e.,Q2 u
p
, solid for positive, dashed for negative; contour

interval is 2K) in (left) DJF and (right) JJA. Light shading indicates the pressure surface where the percentage of

mass above the ground is between 10% and 90%.

FIG. 4. (left) Idealized profile of potential temperature (K) with uniform stratification and a wavenumber-1 per-

turbation: u(l, p)5 2801 60(12 p/105)1 10 sin(l). The zonalization of the 280-K isentrope is denoted by shading as

the area integral above the 280-K isentrope minus the integral above the corresponding pe ’ 950 hPa, as exemplified

in Fig. 1c. (right) The corresponding (solid) isobaric mean and (dashed) isentropicmean of the idealized temperature

profile.
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toward the surface, while the isobaric counterpart,

2(1/g)(›p/›u
p
), is a step function at the surface. As a

result, the isobaric and isentropic mean static stability

of this idealized profile are identical in the interior of

the atmosphere, but the stratification with respect to

isentropes, 2›Q/›pe, is larger than the isobaric coun-

terpart, 2›u
p
/›p, near the top and lower boundaries

where the isentropic line intersects with the bound-

aries. If we think of the tropopause as the top boundary

of tropospheric waves, this idealized example is consis-

tent with Fig. 3 with positive Q2 u
p
in the upper tro-

posphere and negative Q2 u
p
near the surface.

The increased stratification in the isentropic mean

near the boundaries results from an entropy-conserved

zonalization, which retains the extreme value of en-

tropy, whereas the extreme value is smoothed in the

zonal mean. For example, while the 280-K value in the

zonal-mean temperature corresponds to the pressure

level 1000hPa, the reversible zonalization of the 280-K

isentrope corresponds to the equivalent pressure pe ’
950hPa. The reversible zonalization of the 280-K isen-

trope is demonstrated by the shading in Fig. 4 as the area

integral above the 280-K isentrope minus the integral

above the corresponding equivalent pressure 950 hPa.

Interestingly, Eq. (8) becomes u0 ’2df(›u
p
/›f) at the

ground, and therefore, the near-surface isentropic stratifi-

cation is greater than the isobaric counterpart as the effect

of the meridional mixing of surface entropy is included.

Next, to understand the isentropic mean meridional

wind, we define an operator for the difference between

the isentropic mass-weighted integral above Q in Fig. 1a

and the isobaric integral above p 5 pe in Fig. 1b, corre-

sponding to the mass-weighted integral of light shading

minus the integral of dark shading in Fig. 1c:

DM(X)5
g

2pa cosf

"
M(X)2

a cosf

g

ð
p,p

e

dp

þ
sX dl

#

5
1

2p

 ð ð
u.Q,p,p

e

sX dl dp

2

ð ð
u,Q,p.p

e

sX dl dp

!
.

(9)

By the definition of the equivalent pressure, DM(1)5 0

(i.e., the mass in light shading is equal to the mass in

dark shading). Also, if Q is zonally symmetric, the is-

entropic integral is equal to the isobaric integral,

DM(X) 5 0. Therefore, DM(X) is an eddy quantity

related to the thermal perturbation.

Applying the operator DM to y, DM(y) denotes an

eddy quantity analogous to the wave activity defined in

Nakamura and Zhu (2010). As exemplified in Fig. 1c,

high potential temperature in the light shading is carried

poleward and low potential temperature in the dark

shading is transported equatorward, and therefore,

DM(y) describes the poleward transport of heat. In

the small-amplitude limit, it is related to eddy heat

flux [derivations are shown in Eq. (A4)] by

DM(y)’2
sy0u0

p

›Q/›pe
. (10)

It is noteworthy that this is also a hybrid isobaric–

isentropic formula, in which the static stability is

evaluated normal to an isentropic surface rather than

an isobaric surface, and the eddy flux is evaluated at

constant pressure. Near the surface, ›pe/›Q gradually

approaches zero, and therefore DM(y) is closed at

the surface. Also as noted in appendix A, the small-

amplitude form is not exact when the isentropic layer

intersects the ground under the adiabatic condition.

Diabatic heating or diffusion is expected near the ground

in this case, as discussed in context of the diabatic sur-

face layer in Plumb and Ferrari (2005).

Taking the derivative of Eq. (9) with respect to the

mass m and using Eqs. (4), (6), and (7), one can obtain

a simple relationship between the isentropic and iso-

baric mean meridional winds:

yQ 2 yp 5
1

s

›DM(y)

›pe
’2

1

s

›

›pe

�
sy0u0

p

›Q/›pe

�
, (11)

where we have used the small-amplitude approxima-

tion in Eq. (10). In the interior of the atmosphere where

s 5 1 and ›Q/›pe ’ ›u
p
/›p, the isentropic mean me-

ridional wind reduces to the residual meridional wind

in the TEM framework (e.g., Andrews and McIntyre

1976; Edmon et al. 1980). Therefore, we see that

DM(y) is a finite-amplitude Stokes correction between

the isobaric and isentropic mean winds.

We compare DM(y) with its small-amplitude approxi-

mations in Fig. 5, using the isobaric and isentropic static

stability, respectively, as the two differ near the ground.

Similar to the seasonal cycle of eddy heat fluxes,DM(y) is

greatest in the winter hemispheres and smallest in the

NH summer. Above the near-surface layer, as can be

also inferred from the diagnostics of Tanaka et al.

(2004), DM(y) and its small-amplitude approximations

agree very well, although using the isobaric static sta-

bility results in some subtle differences for the 6-hourly

data we analyzed. As one moves into the near-surface

layers, the formulations start to diverge. While s leads

to zero heat flux when the pressure surface is completely

below the ground, the nearly neutral Eulerian static
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stability results in unrealistically large values of

2sy0u0
p
/(›u

p
/›p) near the surface, especially in the winter

hemispheres. As pointed out by Held and Schneider

(1999), the singularity in the near-surface isobaric static

stability in the TEM formulation accounts for an un-

realistically thin near-surface flow. Interestingly, this

shortcoming can be largely remedied by using the isen-

tropic static stability. The isentropic static stability in-

corporates the effect of the meridional mixing in surface

entropy, which is deemed crucial for the near-surface

thermodynamical balance (e.g., Held and Schneider

1999; Plumb and Ferrari 2005). Despite the limitations

FIG. 5. A comparison of Stokes correction DM(y) with its small-amplitude approximations in (left) DJF and (right)

JJA. (a),(b) Isobaric means, 2sy0u0
p
/(›u

p
/›p). (c),(d) Isobaric mean eddy heat flux with isentropic static stability,

2sy0u0
p
/(›Q/›pe). (e),(f)DM(y). Contour intervals are 104ms21 Pa. Light shading indicates the pressure surface where

the percentage of mass above the ground is between 10% and 90%.
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of the small-amplitude form of Eq. (10),2sy0u0
p
/(›Q/›pe)

resembles the fully isentropic formulation well. Alterna-

tively, the STEM formulation of Pauluis et al. (2011) re-

solves the near-surface problem by considering the

Gaussian statistics. Our formulation deals with the

near-surface problem by using the exact isentropic mean

mass flux plus a formal transformation in the vertical

coordinate, and it also shows the advantage of isen-

tropic static stability for the near-surface flow over the

isobaric static stability in the small-amplitude limit. As

we will see later, this treatment also improves the mass

streamfunction and EP flux for the near-surface flow.

In the following sections, only the results with the finite-

amplitude formulations are shown.

Also, DM(y) can account for the meridional mass flux

in a nonmonotonic vertical coordinate, in which it is

more than an eddy term. As in Pauluis et al. (2008) and

Pauluis et al. (2010), the mass streamfunction can be

obtained by using the mass above moist isentropes as

the vertical coordinate, and the magnitude of moist isen-

tropic streamfunction is found to differ from dry isentro-

pic streamfunction (not shown). Although our definitions

in Eqs. (2) and (5) do not require the monotonicity of

the vertical coordinate, the mean circulation in a non-

monotonic coordinate is more complex to interpret, as

the change from the new coordinate pe back to the geo-

metric coordinate p is not a one-to-one correspondence.

For example, Fig. 6 depicts idealized zonally sym-

metric profiles of meridional wind and equivalent po-

tential temperature, with a moist entropy minimum in

the lower troposphere. The isobaric means are denoted

by solid lines and isentropic means by dashed lines.

While there is no one-to-one correspondence from Q to

p because of the nonmonotonic profile, the correspon-

dence fromQ to pe can be established, as pe corresponds

to the total mass of the air parcel with the potential

temperature larger than Q in Eq. (2). In this idealized

case, the isobaric mean static stability vanishes at the

local minimum ›u
p
/›p5 0, but the isentropic mean

›Q/›pe is nonzero by construction, as shown in the

dashed line of Fig. 6. While the circulation is assumed

zonally symmetric, the isentropic mean redistributes the

meridional wind vertically, as a result of adjusting the

nonmonotonic entropy profile to a monotonic basic

state. In the small-amplitude form of Eq. (10), the eddy

term would vanish. Therefore, the difference of the isen-

tropic and isobaric means in this case does not represent an

eddy term, but the zonally symmetric convective adjust-

ment of the atmosphere. This is analogous to the discussion

of wave activity associated with nonmonotonic zonally

symmetric PV gradient in Fig. 3 of Nakamura and Zhu

(2010). Despite the added complexity in interpretation,

this demonstrates an advantage of the hybrid isobaric–

isentropic formulation in understanding the mean cir-

culation in nonmonotonic vertical coordinates.

4. Mean circulation and thermodynamic balance

In this section, we offer a rigorous derivation of Stokes

correction in Eq. (11), its relationship to entropy sources

FIG. 6. Idealized zonally symmetric profiles of (left) meridional wind and (right) equivalent potential temperature

as a function of pressure (hPa). The isobaric mean meridional wind is specified as y(p) 5 22cos(pp/105) and

equivalent potential temperature as ue(p) 5 280 1 60(1 2 p/105) 2 30 sin(pp/105), denoted by solid lines. The

corresponding isentropic means are denoted by dashed lines.
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and sinks, and the static stability defined in the new

coordinate. The thermodynamic energy equation in the

pressure coordinate can be written in terms of potential

temperature u:

Du

Dt
5

›u

›t
1

y

a

›u

›f
1 (u,v) � $fu5

_u , (12)

where u, y, and v are zonal, meridional, and pressure

velocities; _u is the source/sink of u due to diabatic

heating or turbulent diffusion; and $f is a gradient op-

erator in the longitude–pressure plane defined as

$f 5

�
1

a cosf

›

›l
,
›

›p

�
. (13)

Considering the massless underground by the Heavi-

side step function s, the continuity equation in the pres-

sure coordinate can be written as1

›s

›t
1

1

a cosf

›(sy cosf)

›f
1$f � (su,sv)5 0, (14)

and the nondivergent streamfunction can be written as

C5
2pa cosf

g

ð
p,p

e

sy p dp . (15)

If all the air masses are above the ground (i.e., s [ 1),

the continuity equation and streamfunction reduce to

their familiar isobaric forms (e.g., Holton 2004).

The mass budget above u5Q in a longitude–pressure

plane is illustrated in Fig. 7. The mass fluxes across an

isentropic surface at a latitude are equal to the meridi-

onal fluxes above the same isentrope bymass continuity.

Following Nakamura (1995) (the derivations are of-

fered in appendix B), the continuity equation in the co-

ordinates (f, Q, t) can be written as

�
›m

›t

�
f,Q

1
1

a

�
›M(y)

›f

�
Q,t

1
›M( _u)

›Q

� �
f,t

5 0. (16)

Making the transformation in vertical coordinate

from the potential temperature (f, Q, t) to the equiva-

lent pressure (f, pe, t),

�
›m

›t

�
f,Q

5

�
›m

›t

�
f,p

e

2

�
›m

›Q

�
f,t

�
›Q

›t

�
f,p

e�
›M(y)

›f

�
Q,t

5

�
›M(y)

›f

�
p
e
,t

2

�
›M(y)

›Q

�
f,t

�
›Q

›f

�
p
e
,t

.

(17)

Substituting Eq. (17) into Eq. (16) and dividing by

2(›m/›Q)f,t yields the thermodynamic energy equation

in the coordinates (f, pe, t):

DQ

Dt
5

�
›Q

›t

�
f,p

e

1
yQ

a

�
›Q

›f

�
p
e
,t

1ve

�
›Q

›pe

�
f,t

5 _u
Q
,

(18)

where the mean meridional and vertical velocities in

the coordinates (f, pe, t) are defined as

yQ 5 y p 1
1

s

›DM(y)

›pe

ve 5vp2
1

as cosf

›[DM(y) cosf]

›f
. (19)

Here we have used Eqs. (4), (6), (7), and (9) (derivations

are provided in appendix C). It is noteworthy that the

mean vertical velocity in equivalent pressure ve is not

FIG. 7. The budget of mass above u 5 Q at a latitude. Shaded

arrows denote the mass fluxes across theQ surface in the longitude–

pressure plane and white arrows denote the corresponding mass

fluxes across the latitude by mass continuity.

1More generally, the continuity equation in the h (a mono-

tonic function of pressure p) vertical coordinate on the sphere

can be written as (›/›t)(›p/›h)1 (1/a cosf)(›/›l)[u(›p/›h)]1
(1/a cosf)(›/›f)[y(›p/›h) cosf]1(›/›h)[ _h(›p/›h)]5 0 (Simmons

and Burridge 1981). Here we set the mass density by the step

function as ›p/›h5s.
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necessarily equal to the isentropic mean of the vertical

velocity vQ because of the change in vertical coordinate.

Equation (18) is an exact balance between the mean

circulations in equivalent-pressure coordinates (yQ, ve)

and the entropy source/sink _u
Q
. As Q remains constant

following the air parcel in absence of nonconservative

processes, the mean circulations are the advecting ve-

locities for the material derivative D/Dt in the (f, pe)

plane. Since there is no eddy term in Eq. (18), the mean

circulation is essentially equivalent to the isentropic

circulation in Eq. (2.24) of Tanaka et al. (2004) in the

interior of the atmosphere, which is derived by a change

in vertical coordinate from the isentropic circulation of

Andrews (1983).

From Eq. (C2), the corresponding continuity equa-

tion is

�
›s

›t

�
f,p

e

1

�
1

a cosf

›(syQ cosf)

›f

�
p
e
,t

1

�
›(sve)

›pe

�
f,t

5 0.

(20)

In comparison with Eq. (2.19) of Tanaka et al. (2004),

the probability density function s is introduced in our

formulation because of the inclusion of s in the defini-

tion of pe. The nondivergent mass streamfunction can be

obtained by the vertical integral of the meridional mass

flux from the top of the atmosphere to the Q contour:

CQ5M(y)5
2pa cosf

g

ðp
e

0
syQ dpe

’C2
2pa cosf

g

sy0u0
p

›Q/›pe
, (21)

where we have used Eq. (A4) for the small-amplitude

approximation. Therefore, as discussed for Eq. (11), it

is formally shown that CQ is a finite-amplitude exten-

sion of the conventional TEM residual streamfunction

(e.g., Andrews and McIntyre 1976; Edmon et al. 1980),

and yQ and ve in Eq. (19) are the corresponding ex-

tension of the residual velocities. As expected from

Fig. 5, the conventional TEM works well where the

isentropic surface does not intersect with the ground,

where ›Q/›pe ’ ›u
p
/›p and s 5 1.

The mean mass streamfunction in equivalent pres-

sure is displayed in Fig. 8 for DJF and JJA. As the TEM

residual circulation (Edmon et al. 1980) or the isen-

tropic mean circulation (e.g., Held and Schneider 1999;

Tanaka et al. 2004), there exists a single-cell circulation

in each hemisphere. The tropical circulation describes

a solstitial Hadley cell circulation, characterized by an

intense updraft within 108 latitude of the summer hemi-

sphere, crossing the equator in the upper troposphere,

and then descending in the subtropics of the winter

hemisphere. The intensity2 of tropical circulation is

stronger in JJA than DJF, possibly owing to larger di-

abatic heating associated with the monsoons in the

NH. The extratropical circulation rises approximately

along the isentropic surface, for example, moving along

the 300-K isentropic surface from the subtropical lower

troposphere to extratropical upper troposphere. This

suggests that the entropy source/sink in Eq. (18) is

FIG. 8. Isentropic mass-weighted mean potential temperature (dash–dotted; contour interval is 20K) and mass

streamfunction (solid for positive and dashed for negative; contour interval is 20 3 109 kg s21) in (left) DJF and

(right) JJA. Light shading indicates the pressure surface where the percentage of mass above the ground is between

10% and 90%.

2One should note a difference in magnitude between this study

and Fig. 1 of Tanaka et al. (2004). This is due to the difference

between the NCEP–NCAR and NCEP–DOE reanalyses (cf.

Stachnik and Schumacher 2011).
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secondary in the extratropical middle-to-upper tropo-

sphere. The intensity of extratropical circulation peaks

at a similar magnitude in both winter hemispheres, and

the intensity is weakest in the NH summer because of

weak baroclinic eddies (cf. the heat fluxes in Fig. 5).

The high-latitude subsidence moves equatorward near

the surface where the isentropes intersect the ground,

completing the mean circulation within a finite-depth

near-surface layer. These circulation patterns agree well

with those in the isentropic coordinates.

As in Tanaka et al. (2004), the key distinction of our

hybrid isobaric–isentropic diagnostics from the isentro-

pic diagnostics lies in that the time or latitudinal integral/

derivative is evaluated at the surface of constant mass

rather than constant entropy, although the zonal average

is both calculated on constant potential temperature

surface. When using mass as the vertical coordinate, the

majority of air mass lies above the mean surface pres-

sure; it is then a more convenient coordinate to visualize

the mean circulation than the isentropic coordinate.

5. Angular momentum balance and Eliassen–Palm
flux

Previous studies investigated the angular momentum

balance near the surface in the isentropic coordinates

(e.g., Held and Schneider 1999; Koh and Plumb 2004;

Schneider 2005) and geometric coordinates (Plumb and

Ferrari 2005; Kuo et al. 2005). Here we present the

angular momentum budget with the hybrid isobaric–

isentropic framework, similar to Iwasaki (1998). Consid-

ering the boundary condition, the zonal-mean momentum

budget of the atmosphere in the pressure coordinates

can be written as

›up

›t
2 yp( f 1 z

p
)1vp›u

p

›p

52
1

as cos2f

›(sy0u0p cos2f)

›f
2

1

s

›(sv0u0p)
›p

1N
p
,

(22)

where N denotes the surface friction and other mo-

mentum source/sink. The absolute vorticity f 1 z
p

is related to zonal-mean angular momentum M5
a cosf(up 1Va cosf) by

f 1 z
p
52

1

a2 cosf

›M

›f
. (23)

As in the TEM framework, we can replace the iso-

baric advecting winds by the mean circulations in

equivalent pressure, and then construct the material

derivative of the angular momentum in the latitude–

equivalent pressure plane as

1

a cosf

DM

Dt
5

›up

›t
2 yQ( f 1 z

p
)1v e›u

p

›p
5$ � F1N

p
.

(24)

It is shown in appendix C that the EP flux divergence

in this hybrid framework can be written as

$ � F52
1

as cos2f

›

›f

��
sy0u0p1

›up

›p
DM(y)

�
cos2f

�

2
1

s

›

›p
[sv0u0p 1 ( f 1 z

p
)DM(y)] .

(25)

Note that this is a hybrid isobaric–isentropic diagnostic:

the eddy momentum fluxes and wind shears are calcu-

lated from the isobaric means, but DM(y), an eddy

quantity related to eddy heat fluxes, is calculated from

the difference between the isentropic and isobaric means.

From Eqs. (18) and (24), we see that both the mean

circulation and the EP flux divergence would vanish for

adiabatic and frictionless flow in the steady state. This is

the nonacceleration theorem of finite-amplitude non-

geostrophic eddies on the sphere analogous to the is-

entropic counterpart (Andrews 1983; Iwasaki 1998) or

the geometric counterpart (Plumb and Ferrari 2005).

Compared with the isentropic formulation [Eq. (5) in

Iwasaki 1998], Eq. (24) describes the variability of the

isobaric zonal wind up rather than the isentropic mean

wind uQ. The EP flux has a straightforward connection

to the TEM formulation, and it is much simpler than

Eqs. (2.14) and (2.15) of Tanaka et al. (2004), which

require additional knowledge of diabatic heating. Using

Eq. (A4), the small-amplitude limit of Eq. (25) yields

$ � F’2
1

as cos2f

›

›f

�
s

�
y0u0p 2

›up

›p

y0u0
p

›Q/›pe

�
cos2f

�

2
1

s

›

›p

�
s

�
v0u0p 2 ( f 1 z

p
)

y0u0
p

›Q/›pe

��
.

(26)

In the interior of the atmosphere where s 5 1 and

›Q/›pe ’ ›u
p
/›p, this reduces to the familiar TEM EP

flux divergence (e.g., Andrews et al. 1987). Near the

surface, this seems to be a better approximation of

Eq. (25) as the isentropic static stability incorporates

the effect of meridional mixing of surface temperature.

Compared with the formulation of Plumb and Ferrari

(2005), this formulation appears to be simpler, but it is

expressed in term of the isentropic static stability that

is nonlocal in the geometric coordinates.

The angular momentum balance is presented for

the reanalysis in DJF and JJA (Fig. 9). The EP flux
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divergence is mostly confined in the near-surface layers,

and the corresponding convergence lies within the is-

entropic layers aloft. As the EP flux convergence in

the interior of the atmosphere reduces to the TEM

formulation in the small-amplitude limit, it may be re-

garded as a finite-amplitude extension of the PV flux.

The EP flux convergence aloft aligns approximately

along the isentropic surfaces, which can be thought of

FIG. 9. The angularmomentum balance in (left) DJF and (right) JJA. (a),(b) Isentropicmass-weightedmean potential

temperature (dash–dotted; contour interval is 20K) and EP flux divergence (solid for positive and dashed for negative;

contour interval is 4ms21 day21 and, for values larger than 30ms21 day21, is 8ms21 day21). (c),(d)As in Fig. 8, but for

potential temperature and mass streamfunction diagnosed from the EP flux divergence. (e),(f) Zonal-mean zonal wind

(dash–dotted; contour interval is 5ms21) and the residual of angular momentum balance (solid for positive and dashed

for negative; contour interval is 4m s21 day21). Both the EP flux divergence and residual are multiplied by s. Light

shading indicates the pressure surface where the percentage of mass above the ground is between 10% and 90%.
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as the result of the isentropic mixing of PV, analogous to

the isentropic mixing of passive tracers found in geo-

metric coordinates (e.g., Plumb and Mahlman 1987). As

the EP flux divergence and convergence largely cancel

each other in the mass-weighted vertical average, their

magnitudes must be inversely proportional to their

masses. Indeed, the ratio of the divergence versus con-

vergence is about a factor of 4–5 in the SH and 2–3 in the

NH, and this is consistent the ratio of masses between

the free troposphere and near-surface layers.

As the meridional gradient of angular momentum

is much larger than its vertical gradient, ignoring the

vertical angular momentum transport and momentum

source N
p
in Eq. (24), the meridional mass flux can be

obtained from the EP flux divergence as the downward

control diagnostic (Haynes et al. 1991)

CQ’2
2pa cosf

g

ðp
e

0

s

f 1 z
p ($ � F) dpe . (27)

Figures 9c and 9d show the mass streamfunction di-

agnosed from the EP flux divergence from the angular

momentum balance above. It agrees well with the mass

streamfunction calculated directly except in the deep

tropics and near-surface layer (cf. Figs. 8 and 9). In the

deep tropics, the downward control diagnostic breaks

down, since f 1 z
p
’ 0. The diagnosed streamfunction

is not closed near the surface, as expected from the

surface friction as momentum sources/sinks. To show

this, the residual of the angular momentum balance is

presented in the Figs. 9e and 9f. The residual displays

a westward deceleration at the latitudes of surface west-

erlies and an eastward acceleration at the latitudes of

surface easterlies; both are consistent with the expected

surface friction. The residual-based friction is opposite

in sign to the EP flux divergence at the latitudes of

westerlies, and the magnitude of friction is about 1/3–1/5

of the EP flux divergence. Additionally, another re-

gion of significant residual is above the subtropical jet

in the NH winter, and this can be attributed to the

small-scale orographic gravity wave drag. Overall, the

dominance of the EP flux divergence in the mass

streamfunction highlights the critical role of isentropic

mixing of potential vorticity in determining the mean

mass transport circulation from the subtropics to the

poles.

6. Conclusions and discussion

In this paper, we present the mean meridional circu-

lation of the atmosphere using the mass above the isen-

trope of interest as the vertical coordinate. In this vertical

coordinate, the mass-weighted mean circulation is exactly

balanced by entropy sources and sinks with no eddy

flux contribution as in the isentropic coordinate (e.g.,

Andrews 1983; Tung 1986; Iwasaki 1998), and the co-

ordinate can be readily generalized to the mass above

moist isentropes or other quasi-conservative tracers, as in

the tracer-based coordinate in the modified Lagrangian-

mean diagnostic of Nakamura (1995). We also illustrate

the applicability of this framework to an idealized

nonmonotonic moist entropy profile, and it would be

interesting to apply this diagnostic to the mean circula-

tion in the moist isentropic coordinates of Pauluis et al.

(2008, 2010). The new framework here is not restricted

by the Gaussian statistics assumed by Pauluis et al. (2011)

in dealing with nonmonotonic vertical coordinates.

It is shown in the NCEP–DOE Reanalysis 2 that the

new formulation resolves the deficiency of the conven-

tional TEM formulation for the near-surface flow as

well as converges to the conventional TEM in the free

troposphere. In the small-amplitude limit, the hybrid

isobaric–isentropic formulation reduces to the TEM for-

mulation. Therefore, the key improvement near the sur-

face can be partially attributed to the isentropic static

stability [the isentropic mass density 2(1/g)(›pe/›Q)

and Stokes correction in the small-amplitude limit in

Eq. (10) gradually approach zero at the surface], which

incorporates the effect of meridional eddy heat flux at

the surface. This is consistent with Held and Schneider

(1999) and Plumb and Ferrari (2005), who emphasize the

effect of near-surface meridional temperature mixing in

the thermodynamic balance.

The corresponding EP flux divergence for the zonal-

mean angular momentum is formulated in a hybrid

isobaric–isentropic form, extending the conventional

TEM formulation (Andrews and McIntyre 1976; Edmon

et al. 1980) to finite-amplitude nongeostrophic eddies

on the sphere. This has a straightforward connection to

the TEM counterpart in comparison with the isentropic

formulation (Andrews 1983; Iwasaki 1998) or the geo-

metric counterpart (Plumb and Ferrari 2005). Following

the downward control diagnostic of Haynes et al. (1991),

the mean mass streamfunction can be approximately

obtained from the EP flux divergence except for the

deep tropics or the near-surface flow, highlighting

the dominant control of potential vorticity mixing for

the subtropics-to-pole mean circulations. It is then

expected to provide a valuable diagnostic framework

not only for global circulation theory but also for at-

mospheric transport in the troposphere.
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APPENDIX A

Small-Amplitude Limit of DM(y)

Consider a small-amplitude thermal perturbation

with the isentropeQ disturbed from the pressure level pe
by a small displacement dpe(l) 5 p(l, Q) 2 pe, where

p(l, Q) is the pressure at Q, as illustrated by Fig. 1. The

isentropic line can intersect the ground or not. For a

conservative perturbation, the temperature anomaly can

be approximated as

u0[ u2 u
p
’2dpe

›Q

›pe
. (A1)

From the definition of the equivalent pressure, the

mass above Q and the mass above pe are equal. Using

Eq. (9), we have

sdpe ’

ðp
e
1dp

e
(l)

p
e

s dp 5 DM(1)5 0. (A2)

The operator DM(y) in Eq. (9) can be written as

DM(y)5

ðp
e
1dp

e
(l)

p
e

sy dp . (A3)

Using Eq. (A2) and y5 y 0 1 y p, one obtains

DM(y)’

ðp
e
1dp

e
(l)

p
e

sy0 dp1yp
ðp

e
1dp

e
(l)

p
e

s dp

’sy 0dpe 52
sy 0u0

p

›Q/›pe
, (A4)

and we have substituted with Eq. (A1) in the final

equality. We see that DM(y) is proportional to the eddy

heat flux divided by the isentropic static stability pa-

rameter in the small-amplitude limit. In this formula,

the static stability is evaluated normal to an isentropic

surface rather than an isobaric surface, but the eddy flux

is evaluated at constant pressure. The difference be-

tween the isentropic and isobaric static stability is dis-

cussed in section 3.

It should be noted that the approximation in Eq. (A1)

is not exact when the isentropic surface intersects the

ground under the adiabatic condition. For example, in

the left panel of Fig. 4, dpe is constant for most of the

light-shaded area, and therefore Eq. (A1) is insufficient

to describe the temperature anomaly. Diabatic heat-

ing or diffusion is expected in this case, as discussed

in context of the diabatic surface layer in Plumb and

Ferrari (2005).

APPENDIX B

Continuity Equation [Eq. (16)]

The continuity equation can be obtained by following

the derivations in the appendix of Nakamura (1995).

Nakamura (1995) used the coordinates (Q, u, t), where

Q is a tracer for the meridional coordinate and _u is the

vertical velocity. Here we use the coordinates (f, Q, t),

where the potential temperature Q is for the vertical

coordinate and y is the meridional velocity. The rate of

change in mass above the Q isentrope at a fixed lati-

tude and time is

›m(f,Q, t)

›t

5
a cosf

g

›

›t

ðð
u.Q

s dl dp

5
a cosf

g

ðð
u.Q

›s

›t
dl dp2

a cosf

g

›

›Q

ðð
u.Q

s
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›t
dl dp

5
a cosf

g
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›Q

�
Q
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u.Q

›s

›t
dl dp2
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u.Q

›(su)

›t
dl dp

�
.

(B1)

Equations (12) and (14) give the flux form of conti-

nuity and thermodynamic equations

›s

›t
52

1

a cosf

›(sy cosf)

›f
2$f � (su,sv)

›(su)

›t
52

1

a cosf

›(syu cosf)

›f
2$f � (suu,svu)1s _u .

(B2)

Substituting into Eq. (B1) and using the divergence

theorem, and noting the identity

1

a cosf

›

›f

ðð
u.Q

sy cosf dl dp

5
1

a cosf

�ðð
u.Q

›(sy cosf)

›f
dl dp

2
›

›Q

ðð
u.Q

sy cosf
›u

›f
dl dp

�
, (B3)

one obtains the continuity equation in the (f, Q, t) co-

ordinates
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›m

›t
52

a cosf

g

›

›Q

ðð
u.Q

s _udl dp

2
1

a

›

›f

�
a cosf

g

ðð
u.Q

sy dl dp

�

52
›M( _u)

›Q
2
1

a

›M(y)

›f
. (B4)

APPENDIX C

Mean Circulation in Equivalent Pressure [Eq. (19)]
and Eliassen–Palm Flux [Eq. (25)]

Using Eqs. (14) and (15), and the definitions of

Eqs. (4) and (7), the isobaric mean meridional and

vertical winds can be written in terms of the non-

divergent streamfunction

y p 5
g

2pas cosf

�
›C

›p

�
f,t

vp 52
g

2pas cosf

"
1

a

�
›C

›f

�
p,t

1

�
›m

›t

�
f,p

#
. (C1)

From Eqs. (16), (17), and (18), and the definitions of

Eqs. (4) and (6), one can obtain the mean meridional

and vertical winds in equivalent pressure:

yQ 5
g

2pas cosf

�
›M(y)

›pe

�
f,t

v e52
g

2pas cosf

(
1

a

�
›M(y)

›f

�
p
e
,t

1

�
›m

›t

�
f,p

e

)
. (C2)

Using the definition (9), the hybrid isobaric–isentropic

diagnostic (i.e., p 5 pe) yields the mean circulation with

Stokes correction in Eq. (19):

yQ 5 y p 1
1

s

›DM(y)

›pe

v e5vp 2
1

as cosf

›[DM(y) cosf]

›f
. (C3)

Next, the difference of Eqs. (22) and (24) gives

$ � F52
1

as cos2f

›(sy0u0
p
cos2f)

›f
2

1

s

›(sv0u0
p
)

›p

2 (yQ 2 y p)( f 1 z
p
)1 (v e 2vp)

›up

›p
. (C4)

Substituting Eq. (C3) into Eq. (C4) and using p 5 pe,

one obtains the EP flux divergence in the hybrid di-

agnostic framework

$ � F52
1

as cos2f

›

›f

��
sy0u0p1

›up

›p
DM(y)

�
cos2f

�

2
1

s

›

›p
[sv0u0p 1 ( f 1 z

p
)DM(y)] .

(C5)

REFERENCES

Andrews, D. G., 1983: A finite-amplitude Eliassen–Palm theorem

in isentropic coordinates. J. Atmos. Sci., 40, 1877–1883.

——, and M. E. McIntyre, 1976: Planetary waves in horizontal and

vertical shear: The generalizedEliassen–Palm relation and the

mean zonal acceleration. J. Atmos. Sci., 33, 2031–2048.
——, and ——, 1978: Generalized Eliassen–Palm and Charney–

Drazin theorems for waves on axismmetric mean flows in

compressible atmospheres. J. Atmos. Sci., 35, 175–185.

——, J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere

Dynamics. Academic Press, 489 pp.

Butchart, N., and E. E. Remsberg, 1986: The area of the strato-

spheric polar vortex as a diagnostic for tracer transport on an

isentropic surface. J. Atmos. Sci., 43, 1319–1339.
Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-

scale disturbances from the lower into the upper atmosphere.

J. Geophys. Res., 66, 83–109.
Czaja, A., and J. Marshall, 2006: The partitioning of poleward

heat transport between the atmosphere and ocean. J. Atmos.

Sci., 63, 1498–1511.

Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen–

Palm cross sections for the troposphere. J. Atmos. Sci., 37,

2600–2616.

Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Shepherd, and

K. P. Shine, 1991: On the ‘‘downward control’’ of extratropical

diabatic circulations by eddy-induced mean zonal forces.

J. Atmos. Sci., 48, 651–678.

Held, I. M., and T. Schneider, 1999: The surface branch of the

zonally averaged mass transport circulation in the tropo-

sphere. J. Atmos. Sci., 56, 1688–1697.

Holton, J. R., 2004: An Introduction to Dynamic Meteorology.

Academic Press, 535 pp.

Iwasaki, T., 1989: A diagnostic formulation for wave-mean flow

interactions and Lagrangian-mean circulation with a hybrid

vertical coordinate of pressure and isentropes. J. Meteor. Soc.

Japan, 67, 293–312.
——, 1998: A set of zonal mean equations in a pressure–isentrope

hybrid vertical coordinate. J. Atmos. Sci., 55, 3000–3002.

Juckes, M., 2001: A generalization of the transformed Eulerian-

mean meridional circulation.Quart. J. Roy. Meteor. Soc., 127,
147–160.

——, I. N. James, and M. Blackburn, 1994: The influence of Ant-

arctica on the momentum budget of the southern extratropics.

Quart. J. Roy. Meteor. Soc., 120, 1017–1044.

Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo,

M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II

Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643.
Koh, T.-Y., and R. A. Plumb, 2004: Isentropic zonal average for-

malism and the near-surface circulation. Quart. J. Roy. Me-

teor. Soc., 130, 1631–1653.

Kuo, A., R. A. Plumb, and J. Marshall, 2005: Transformed Eulerian-

mean theory. Part II: Potential vorticity homogenization and

the equilibrium of a wind- and buoyancy-driven zonal flow.

J. Phys. Oceanogr., 35, 175–187.

2212 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 70



McIntosh, P. C., and T. J. McDougall, 1996: Isopycnal averaging

and the residual mean circulation. J. Phys. Oceanogr., 26,

1655–1660.

Nakamura, N., 1995: Modified Lagrangian-mean diagnostics of the

stratospheric polar vortices. Part I. Formulation and analysis of

GFDL SKYHI GCM. J. Atmos. Sci., 52, 2096–2108.

——, and D. Zhu, 2010: Finite-amplitude wave activity and diffu-

sive flux of potential vorticity in eddy-mean flow interaction.

J. Atmos. Sci., 67, 2701–2716.

Pauluis, O., A. Czaja, and R. Korty, 2008: The global atmospheric

circulation on moist isentropes. Science, 321, 1075–1078.

——, ——, and ——, 2010: The global atmospheric circulation in

moist isentropic coordinates. J. Climate, 23, 3077–3093.

——, T. Shaw, and F. Lalibert�e, 2011: A statistical generalization of

the transformed Eulerian-mean circulation for an arbitrary

vertical coordinate system. J. Atmos. Sci., 68, 1766–1783.

Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate.AIP Press,

520 pp.

Plumb, R. A., and J. D. Mahlman, 1987: The zonally averaged

transport characteristics of the GFDL general circulation/

transport model. J. Atmos. Sci., 44, 298–327.

——, and R. Ferrari, 2005: Transformed Eulerian-mean theory.

Part I: Nonquasigeostrophic theory for eddies on a zonal-

mean flow. J. Phys. Oceanogr., 35, 165–174.

Schneider, T., 2005: Zonal momentum balance, potential vorticity

dynamics, and mass fluxes on near-surface isentropes. J. At-

mos. Sci., 62, 1884.

Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-

momentum conserving vertical finite-difference scheme and

hybrid vertical coordinates. Mon. Wea. Rev., 109, 758–766.

Stachnik, J. P., and C. Schumacher, 2011: A comparison of the

Hadley circulation in modern reanalyses. J. Geophys. Res.,

116, D22102, doi:10.1029/2011JD016677.

Tanaka, D., T. Iwasaki, S. Uno, M. Ujiie, and K. Miyazaki, 2004:

Eliassen–Palm flux diagnosis based on isentropic representa-

tion. J. Atmos. Sci., 61, 2370–2383.
Townsend, R. D., and D. R. Johnson, 1985: A diagnostic study of

the isentropic zonally averaged mass circulation during the

First GARPGlobal Experiment. J. Atmos. Sci., 42, 1565–1579.

Tung, K. K., 1986: Nongeostrophic theory of zonally averaged

circulation. Part I: Formulation. J. Atmos. Sci., 43, 2600–

2618.

JULY 2013 CHEN 2213


