Syllabus

EAS 305(0): Climate Dynamics

Examines processes that determine climate and contribute to its change, including atmospheric radiation, ocean circulation and atmospheric dynamics.

 Natalie Mahowald, Snee 2140, 607-255-5166 <u>mahowald@cornell.edu</u> <u>http://www.geo.cornell.edu/eas/PeoplePlaces/Faculty/mahowald/</u>

 Gang Chen, Bradfield 1115, 607-255-1503 gchen@cornell.edu http://sunspot.eas.cornell.edu/~gc352/

Lecture: MWF 12:20-1:10

Office hours: by appointment (please feel free to come by). Course web site: we'll use blackboard, so please sign up.

Course objectives

- Describe and quantify energy budget of planet and surface
- Describe greenhouse effect quantitatively
- Describe quantitatively impact of water vapor, clouds, aerosols, surface albedo changes on climate
- Describe mean circulation, cause of mean circulation and heat transports of atmosphere and oceans
- Describe natural and anthropogenic climate change forcings and response quantitatively

Grading:

25% Homeworks (approximately weekly)

25% Class project and class presentation

20% Mid-term (October 8)

20% Final (at finals time)

10% Class attendance/participation

There will also be a graduate version of this course, requiring additional homework and project.

Text book: Global Physical Climatology, by Dennis Hartman . This book is required. It is on reserve at Engineering Library.

Class project

Students will form groups of 2-4 students to focus on one particular topic for their class project. The students will give a presentation in class, and submit a 5-10 page double spaced paper on their class project. September 27 the topic of the project, group names, outline and main references will be due, November 19, first draft of presentation is due. November 29, December 1 and 3 will be presentation days.

Honor Code

The Cornell Academic Integrity code is expected to be followed in this course. Students should submit their own work for academic credit. For homeworks and the class project, collaboration is allowed in the preparation, but students should be careful that they are contributing an equal share to these collaborations.

The course is co-taught by professors Mahowald and Chen in fall 2010.

Syllabus

I. Introduction to the climate system (Chapter 1 and appendix B).

August 25: Introduction to course

August 27, August 30: Introduction to the climate system (GPC 1-1.8, Appendix B)

II. Global energy balance (Chapter 2)

September 1: Energy flux

September 3: Discussion of IPCC summary for policy makers

September 8: black body radiation and green house effect

September 10: Global radiative budget, global distribution of radiation and heat transports

III. Atmospheric radiative transfer and climate (Chapter 3.1-3.6,3.8-3.9)

September 13: Introduction to radiation, gas interactions with radiation

September 15: Gas interactions with radiation and Beer's Law

September 17: Absorption equations/Radiative equilibrium

September 20: Lapse rate /Radiative-convective equilibrium

September 22: Clouds and radiation

September 24: Radiative transfer and climate: problems and solutions.

IV. Energy balance of the surface (Chapter 4)

September 27: Energy budget of surface, storage in surface

September 29: Discussion

October 1: Radiative heating of surface October 4: Atmospheric boundary layer

October 6: Midterm review

October 8: Midterm

(Fall Break)

V. Atmospheric General Circulation and climate (Chapter 6)

October 13: Mean circulation

October 15: fluid dynamics

October 18: Rotating table demonstration of atmospheric circulation

October 20: Geostrophy/thermal wind

October 22: Discussion

October 25: Mean circulation/heat transports

October 27: Heat transports/zonal asymmetries

VI. Ocean circulation and climate (Chapter 7)

October 29: Mean circulation/temperature salinity diagrams

November 1: Wind driven circulation

November 3: Eddies in the oceans

November 5: Heat transports in the oceans

VII. Feedbacks (Chapter 9)

November 8: Radiative forcings and climate response

November 10: Water vapor feedbacks

November 12: snow/ice albedo feedbacks

VIII. Climate change (Chapter 12/supplemental material)

November 15: Glacial/interglacial climate change: forcings and response

November 17: Natural climate change: forcings and response

November 19: Anthropogenic climate change: forcings and response

November 22: Discussion

(Thanksgiving)

Final presentations

November 29, December 1, 3